
Return-to-libc Attack
and

Return-oriented Programming (ROP)

1

SUSTech CS 315 Computer Security 2023

present by frank with LOVE

Outline
• Recall NX/DEP countermeasure

• Defeat the countermeasure

• Understanding the process’s stack layout

• Function arguments

• Functions prologue and epilogue

• Multiple function call

• Design ROP chain

• Modern protections

• Summary 2

• Marks memory regions as non-executable
• Remove executable flag (x) i.e. rwx -> rw-

• Implemented by OS

• Hardware support(fast)

Recall NX/DEP countermeasure

$gcc –z execstack shellcode.c
$./a.out
Good_Job!$

stack memory marked as not executable $gcc –z noexecstack shellcode.c
$./a.out
Segmentation fault (core dumped)

Bypass the countermeasure

• Return-oriented programming (ROP)

• can be Turing complete

• not inject malicious instructions

• uses instruction sequences(gadgets) already present in executable memory

• exploit by manipulating return addresses

• control registers:

• Data only exploitation

ret address20x1337c0de0xdeadbeef0x804850a

Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-into-libc without function calls (on the x86).
In Proceedings of the 14th ACM conference on Computer and communications security (CCS '07). Association for
Computing Machinery, New York, NY, USA, 552–561. https://doi.org/10.1145/1315245.1315313

Bypass the countermeasure

• Return-oriented programming (ROP)

• Let’s begin our trip bypass NX protection!

Understanding the process ’s stack layout

• Function arguments

...
0x3y

0x2x

return addr
old ebpebp

0x5a

...

int foo(int x, int y) {
int a = x + y;
return a;

}

int main() {
int b = foo(2, 3);
puts("Bye~");

}

push %ebp
mov %esp,%ebp
sub $0x4,%esp
mov 0x8(%ebp),%edx
mov 0xc(%ebp),%eax
add %edx,%eax
mov %eax,-0x4(%ebp)
mov -0x4(%ebp),%eax
leave
ret

*Note that we take x86 architecture as an example
*Also note in AT&T format, “mov %esp, %ebp” means set $ebp = $esp

Function
prologue

Function
epilogue

调用约定(calling conventions)

Understanding the process ’s stack layout

• Function call chain

int bar(){
 return 4;
}

int foo(int x, int y) {
int a = bar();
a += x + y;
return a;

}

int main() {
int b = foo(2, 3);
puts("Bye~");

}

...
0x3main

0x2
return addr
old ebpfoo

a
return addr
old ebpbar

...

Bypass the countermeasure

• Return-oriented programming (ROP)

• Let’s begin our trip bypass NX protection!

• We can continually jump to many places(as long as it marked as executable)

• So we can reuse many code gadget, call many functions: set a call chain.

• BUT... where to find those gadgets/functions?

Recall: Program Memory, deeper view

• Most modern programs are dynamically

linked, this means they can use functions

defined in shared libs(e.g. glibc)

• When program is loaded, the shared libs

also loaded in program memory

• View by cat /proc/[fd]/maps (cmdline) or

vmmap (gdb)

https://i.stack.imgur.com/epGfE.png

Recall: Program Memory, deeper view

https://i.stack.imgur.com/epGfE.png

Bypass the countermeasure

• Return-oriented programming (ROP)

• Let’s begin our trip bypass NX protection!

• We can continually jump to many places(as long as it marked as executable)

• So we can reuse many code gadget, call many functions: set a call chain.

• GNU C Library provides many frequently used functions and we can reuse those function and

gadgets.

• https://sourceware.org/git/?p=glibc.git;a=summary

• The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86). Hovav Shacham. In

CCS'07. https://cseweb.ucsd.edu/~hovav/dist/geometry.pdf

Design ROP chain-A Quick view

• Overwrite return address, arguments, and return address

...
string args
ra for system

ra for vuln
0x41414141
0x41414141

...

Design ROP chain

• Overwrite return address, arguments, and return address

...
string argschar* point to “/bin/sh” ->

ra for system

ra for vuln
0x41414141ebp

0x41414141overflow ->

...

pop eip

Design ROP chain-A Quick view

Design ROP chain

• Overwrite return address, arguments, and return address

• When returning from overflow function...

pop eip

Design ROP chain-A Quick view

...
string argschar* point to “/bin/sh” ->

ra for system

systemesp

0x41414141
0x41414141overflow ->

...

Design ROP chain

• Overwrite return address, arguments, and return address

• When returning from overflow function

• When returned (entering) to system in libc...

• https://github.com/bminor/glibc/blob/master/sysdeps/posix/system.c

...
system arg[0]char* point to “/bin/sh” ->

ra for system

old ebpold ebp saved here

...

...esp

Design ROP chain-A Quick view

Design ROP chain

• Overwrite return address, arguments, and return address

• When returning from overflow function

• When returned to system in libc

• https://github.com/bminor/glibc/blob/master/sysdeps/posix/system.c#L189

• When returning from system in libc...

...
system arg[0]char* point to “/bin/sh” ->

exitesp

pop eip

Design ROP chain-A Quick view

Bypass the countermeasure

• Return-oriented programming (ROP)

• Let’s begin our trip bypass NX protection!

• We can continually jump to many places(as long as it marked as executable)

• So we can reuse many code gadget, call many functions: set a call chain.

• where to find those gadgets/functions?

• GNU C Library provides many frequently used functions

• We can reuse function and gadgets in glibc. (more detail on later lab)

• ROP can be used to bypass more strong protections

Design ROP chain

• If program enabled extra protections (e.g. seccomp and disable exec systemcall)

• If overflow is limited(e.g. scanf(‘%s’) will chunk input, or length is limited)

• Use ROP to overcome these limitation

Design ROP chain-A Deeper view

Design ROP chain

• If program enabled extra protections (e.g. seccomp and disable exec systemcall)

• If overflow is limited(e.g. scanf(‘%s’) will chunk input, or length is limited)

• Use ROP to overcome these limitation

Design ROP chain-A Deeper view

...
0x00000200third arg

0x0804a200second argument

0x00000000first argument of read

0x080484cdleave;ret;(return address of read)

ra for vuln(address of read function)

ebp0x0804a200（an address inside bss segment)

0x41414141
esp0x41414141Overflow here

overflow

Let’s consider a more powerful example(stack pivot)
With overflow, we set up our first ROP chain:

Design ROP chainDesign ROP chain-A Deeper view

...
0x00000200third arg

0x0804a200second argument

0x00000000first argument of read

0x080484cdleave;ret;(return address of read)

espra for vuln(address of read function)

0x0804a200（an address inside bss segment)

0x41414141
0x41414141Overflow here

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

ebp0x00000000(in .bss segment) 0x0804a200
...

When leaving “vuln” function, we will control $ebp
register.

overflow

Design ROP chainDesign ROP chain-A Deeper view

...
0x00000200third arg

0x0804a200second argument

0x00000000first argument of read

0x080484cdleave;ret;(return address of read)

espra for vuln(address of read function)

0x0804a200（an address inside bss segment)

0x41414141
0x41414141Overflow here

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

ebp0x00000000(in .bss segment) 0x0804a200
...

read(stdin, &bss, 0x200)

Now we will read data from stdin to 0x0804a200

Design ROP chainDesign ROP chain-A Deeper view

...
0x00000200third arg

0x0804a200second argument

0x00000000first argument of read

esp0x080484cdleave;ret;(return address of read)

ra for vuln(address of read function)

0x0804a200（an address inside bss segment)

0x41414141
0x41414141Overflow here

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

ebp0x0804a200(in .bss segment) 0x0804a200
...

read

We read our second payload in to 0x0804a200
After “read”, we return to leave gadget again

Design ROP chainDesign ROP chain-A Deeper view

...
0x00000200third arg

0x0804a200second argument

0x00000000first argument of read

0x080484cdleave;ret;(return address of read)

ra for vuln(address of read function)

0x0804a200（an address inside bss segment)

0x41414141
0x41414141Overflow here

...
0x2f62696e
0x080bcac6
0x080ee980
0x0806de9b

spbp0x0804a200(in .bss segment) 0x0804a200
...

This time we can control $esp by $ebp (we
controlled ebp before).

Design ROP chainDesign ROP chain-A Deeper view

...
0x2f62696e
0x080bcac6
0x0804a500

esp0x0806de9b
ebp0x0804a200(in .bss segment) 0x0804a200

...

Now we can begin a new trip of ROP!
(but without length and chunk limitation)

Design ROP chainDesign ROP chain-A Deeper view

...
0x2f62696e
0x080bcac6
0x0804a500

esp0x0806de9b
ebp0x0804a200(in .bss segment) 0x0804a200

...

A little bit larger ROP chain to execve(“/bin/sh”, NULL, NULL)

int 0x80
inc eax ; ret
inc eax ; ret
inc eax ; ret
inc eax ; ret
inc eax ; ret
inc eax ; ret
inc eax ; ret
inc eax ; ret
inc eax ; ret
inc eax ; ret
inc eax ; ret
xor eax, eax ; ret
@ .data + 8
pop edx ; ret
@ .data + 8
pop ecx ; ret
@ .data
pop ebx ; ret
mov dword ptr [edx], eax ; ret
xor eax, eax ; ret
@ .data + 8
pop edx ; ret
mov dword ptr [edx], eax ; ret
/sh
pop eax ; ret
@ .data + 4
pop edx ; ret
mov dword ptr [edx], eax ; ret
/bin
pop eax ; ret
@ .data
pop edx ; ret

write “/bin/sh” to 0x0804a500

write NULL (0) to 0x0804a508

set argument:
eax = 0xb
ebx = 0x0804a500
ecx = 0x0804a508
edx = 0x0804a508

software interrupt 'int 0x80'. syscall

https://faculty.nps.edu/csea
gle/assembly/sys_call.html

note: since we can do arbitrary system call, we can call “execveat”(no.320) to bypass “execvle”(no.11) sandbox
also, we can call open(“/etc/passwd”),read($eax, .bss, 0x100), write(stdout, .bss, 0x100) to leak secret files

Protections

• ROP is powerful, but there still more powerful protections invented to mitigate ROP attack.

• Like a infinite cat-and-mouse game.

Protection:
Canary/Cookie Protection
• (Canary/Cookie) can detect stack buffer overflow vulnerability when

attacker overwrites the function return address in the stack frame

• Insert by compiler

• Defeat Canary:

• Overwriting the Canary with the same value

• – Brute force attack (e.g., DynaGuard in ACSAC’15)
scanf()scanf()

overflow

More Protection:
Control-flow integrity (CFI)
• include code-pointer separation (CPS), code-pointer integrity (CPI),

stack canaries, shadow stacks, and vtable pointer verification.

• Widely used in Android

More Protection:
Control-flow integrity (CFI)
• include code-pointer separation (CPS), code-pointer integrity (CPI),

stack canaries, shadow stacks, and vtable pointer verification.

• Widely used in Android

• Other CFI implementation:

• pointer authentication code PAC

Explore PAC implementation in Apple:
https://www.usenix.org/system/files/usenixsecurity23-cai-zechao.pdf

http://blog.ssg.aalto.fi/2019/06/protecting-against-run-time-attacks.html

More Protection:
Control-flow integrity (CFI)
• include code-pointer separation (CPS), code-pointer integrity (CPI),

stack canaries, shadow stacks, and vtable pointer verification.

• Widely used in Android

• Other CFI implementation:

• pointer authentication code PAC

• AddressSanitizer

• ENDBR
https://www.semanticscholar.org/paper/ABCFI%3A-Fast-and-Lightweight-Fine-Grained-
Integrity-Li-Chen/1ddadfb44e66352a72550f3fc657be738858259e

Explore PAC implementation in Apple:
https://www.usenix.org/system/files/usenixsecurity23-cai-zechao.pdf

http://blog.ssg.aalto.fi/2019/06/protecting-against-run-time-attacks.html

Summary:
• The Non-executable-stack mechanism can be bypassed

• To conduct the attack, we need to understand lowlevel details about

function invocation

• The technique can be further generalized to Return Oriented

Programming (ROP)

• ROP can be mitigated by CFI check, the war between attack and

defense never ends!

• We will try return-to-libc attack in lab exercise

About heap vulnerability:
• Use-After-Free

• Double-Free

• Unlink

• Heap Feng Shui

• Heap spray

• HeapOverflow

Those vulnerability and exploitation will not be included in class,
Recommend link if you are interested:

https://heap-exploitation.dhavalkapil.com/

https://github.com/shellphish/how2heap

https://firmianay.gitbook.io/ctf-all-in-one/3_topics/pwn/3.1.6_heap_exploit_1

