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Abstract. The field of Automatic Exploit Generation (AEG) plays a 
pivotal role in the assessment of software vulnerabilities, automating 
the analysis for exploit creation. Although AEG systems are instrumen-
tal in probing for vulnerabilities, they often lack the capability to con-
tend with defense mechanisms such as vulnerability mitigation, which 
are commonly deployed in target environments. This shortfall presents 
significant challenges in exploitation. Additionally, most frameworks 
are tailored to specific vulnerabilities, rendering their extension a 
complex process that necessitates in-depth familiarity with their 
architectures. To overcome these limitations, we introduce the SAEG 
framework, which streamlines the repetitious aspects of existing exploit 
templates through a modular and extensible state machine that builds 
upon the concept of an Exploit Graph. SAEG can methodically filter 
out impractical ex-ploitation paths by utilizing current information 
and the target pro-gram’s state. Additionally, it simplifies the 
integration of new information leakage methods with minimal overhead 
and handles multi-step exploita-tion procedures, including those 
requiring the leakage of sensitive data. We demonstrate a prototype of 
SAEG founded on symbolic execution that can simultaneously explore 
heap and stack vulnerabilities. This pro-totype can explore and combine 
leakage and exploitation effectively, gen-erating complete exploits to 
obtain shell access for binary files across i386 and x86_64 architectures.
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1. Introduction
The field of Automatic Exploit Generation (AEG[1]) assists not only in crafting cyber-

attacks but also in bolstering cybersecurity defenses. Such tools[2] enable software manufac-

turers to gauge the severity of their products’ vulnerabilities and prioritize their remediation

strategies.

In recent times, as vulnerability mitigation strategies become commonplace in modern

operating systems, the ability to breach these defense mechanisms has emerged as a critical

challenge for executing practical attacks in production environments. Numerous vulnerabil-

ities result only in denial of service, failing to compromise sensitive information or facilitate

arbitrary code execution, chiefly due to the robustness of security defenses or their inherent

limitations. Thus, evaluating vulnerabilities’ exploitability under defense mechanisms is a

crucial aspect of AEG. For instance, Syzkaller[3] continually reveals a multitude of proof-of-

concept (POC) that induce kernel crashes and many of them remain unmitigated yet. How-

ever, many POCs do not pose meaningful exploitation threats due to intrinsic vulnerability

limitations or robust defense measures. AEG’s role is to discern which vulnerabilities can

be maneuvered into viable exploits under the constraint of these defense mechanisms.

1.1 Challenges from Modern Protection Mechanisms

Contemporary operating systems and compilers widely support a quartet of distinguished

defense mechanisms: Data Execution Prevention (DEP), often known as the NX bit, Stack

Canaries, Address Space Layout Randomization (ASLR), andRELocationRead-Only (RELRO).

DEP is designed to deter the execution of code from data pages, effectively preventing certain

types of exploits such as shellcode injection. Stack Canaries safeguard the call stack with

a secret value to detect buffer overflow attempts, while ASLR systematically randomizes

memory addresses to hinder attackers from predicting target locations. The RELRO feature

marks the Global Offset Table (GOT) as read-only after initialization to prevent attackers

from hijacking the control flow by tampering with the GOT. Consequently, in scenarios

where these protective measures are enabled, attackers typically need to adeptly combine
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multiple techniques to carry out attacks through information leakage and bypass these pro-

tections.

Table 1 Protections bypass ability of recent AEG framework

Framework NX Canary ASLR
Zeratool[4] G# #  
BOF AEG[5]  #  
LAEG[6] G# G# G#
PANGR[7]  # #
ExpGen[8]  # G#

CanaryExp[9]  G# G#
SAEG    

 means that the framework can bypass this defense with several techniquesG#means that the framework can bypass this defense with one technique#means that the framework can not bypass this defense

After evaluating existing implementations, author noticed that most frameworks neglect

complex information leakage challenges. As indicated in Table 1, few efforts have been

made to concurrently address NX, ASLR, and Canary. All current open-source frameworks

fall short in circumventing Canary and other CFI checks. However, these three mechanisms

are widely supported by modern compilers such as gcc and clang and are extensively used in

operating systems like OpenBSD 7.4, where the default clang-local compiler ships with all

three enabled. Thus, given the lack of general capability among present AEG frameworks

to manage such complex exploitation efforts, the generation of exploits involving complex

information leaks represents a meaningful yet challenging endeavor.

1.2 Challenges from Real-world Programs

Real-world programs are typically much more complex than those found in CTF chal-

lenges, which pose significant challenges for traditional static analysis-based symbolic exe-

cution. Some current research has aimed to address these gaps in symbolic execution, such

as dealing with applications that rely on various libraries[10] or tracking the dynamic behavior

exhibited by multithreaded applications[11].

Given that real-world applications encompass vast modules and functionalities, AEG

must also be capable of efficiently and comprehensively generating exploits for large-scale
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applications. However, existing AEG implementations that rely on symbolic execution often

encounter state explosion issues in larger applications, which can halt the analysis process.

To mitigate the state explosion problem, current AEG approaches often substitute symbolic

execution with techniques like fuzzing[12] or abandon the goal of complete exploit genera-

tion in favor of guiding manual exploitation. Thus, an essential and unresolved challenge

is efficiently analyzing and processing large-scale applications within an AEG framework

while leveraging the benefits of symbolic execution.

1.3 Solutions

Complex exploits typically involve a multistep process to progressively gather new in-

formation and ultimately complete the attack. Consequently, there is a need for a fine-grained

exploit system that can efficiently manage and filter the necessary steps. Towards this end,

this work have crafted an expandable exploitation graph based on attack graphs[13] to accu-

rately depict each step in the attack sequence and label the acquired information. This work

have developed an algorithm to generate these exploitation graphs using the target program

and primitive attack templates. The graph’s analysis is carried out through symbolic execu-

tion to find potential successor nodes. If the exploit generation is successful, this work will

obtain a complete path composed of nodes in the exploitation graph. Finally, this research

enhances the analysis capabilities and efficiency for large-scale programs by introducing

a novel target-directed symbolic execution method and optimizing the symbolic execution

process for library functions.

Here, author list the main contributions of this work:

• (1) This work have developed and implemented SAEG, an innovative AEG framework

that utilizes an exploitation graph derived from attack graphs to accurately manage the

steps involved in exploiting vulnerabilities.

• (2) This work introduce a refined approach to AEG that utilizes primitive attack tem-

plates. In contrast to traditional AEG solutions dependent on complete attack tem-

plates, this work’s method simplifies the generation of complex exploits capable of
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bypassing modern protection measures and improves extensibility.

• (3) The evaluation of 34 real Capture The Flag (CTF) and 10 Cyber Ground Challenge

(CGC) binaries indicates that SAEG can produce intricate exploits involving multiple

steps. Compared to contemporary frameworks, SAEG’s exploit generation efficiency

is 5.4x greater on average, and it can generate exploits beyond the capabilities of those

frameworks.

• (4) Author released the source code of SAEG and the test cases used in the experiments

at https://github.com/GhostFrankWu/SAEG.

2. Background
The concept of attack graphs was initially conceptualized to represent the entirety of

a cyber-attack process, encompassing stages such as initial access, privilege escalation, and

lateral movement. Analogously, in the context of binary program exploitation, crafting an

interactive shell exploit often necessitates the orchestration of various vulnerability exploita-

tion techniques. To streamline the automation of complex exploits requiring multiple ex-

ploitation stages, this work introduce the exploitation graph, an evolution of attack graphs

designed specifically for binary program attack sequences.

Exploitation Techniques

Traditional binary exploitation is mainly categorized by the target data region: stack

or heap. Exploitation based on the stack primarily manipulates the stack buffer overflow

for control flow hijacking. It employs return-oriented programming (ROP) to counteract

DEP protections and leverages format string vulnerabilities to facilitate information leakage,

thereby subverting Canary and ASLR defenses. Exploitation based on the heap primarily in-

volves constructing a desired heap layout, often referred to as heap Feng Shui, and leveraging

vulnerabilities such as heap overflows, use-after-free, and double-free to enable information

leakage and arbitrary address writes for exploitation.
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2.0.1 Stack-based Buffer Overflow

One typical scenario of Stack-based Buffer overflow[14] is a function like strcpy ne-

glects to enforce buffer boundaries, there is a risk of overwriting adjacent memory, poten-

tially resulting in the corruption of neighboring stack frame elements, including the Canary,

base pointer, and return address. These vulnerabilities can lead to shellcode injection or ROP

attacks, enabling unauthorized attackers to obtain the entire shell access.

An AEG framework needs the capability to perceive the program’s runtime state, plan

paths, and correctly overwrite the Canary and return address after achieving information

leakage, ultimately hijacking the program’s control flow upon function return.

2.0.2 Format String Vulnerability

Exploiting format string vulnerabilities is a common technique for information leak-

age and sometimes also a way to hijack control flow. When the printf() function’s first

parameter (the format string) is under user control, attackers can carefully construct special

format specifiers like %s, %5$p, %hn, etc., to crash the program or leak data from the stack,

arbitrary addresses, or achieve arbitrary address writes.

The va_list pointer in printf() sequentially reads data from the stack. At this point,

an attacker can modify [num] using a format like %[num]$[fmt], specifying the offset rel-

ative to the initial position of va_list. By using [fmt], the attacker controls the behavior of

the printf() function. Attackers can access controllable memory using specific offsets and

achieve arbitrary memory read/write using indirect addressing format specifiers like s and

n.

Depending on the length and content restrictions of controllable characters in the vul-

nerability’s environment and the varying ability to manipulate data on the stack, the exploita-

tion capability of format string vulnerabilities also differs. The ability to achieve information

leakage through format string attacks typically has broad requirements. Therefore, imple-

menting automatic detection and exploitation of format string vulnerabilities can enhance the
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framework’s ability to leak information and provide the chance of control flow hijacking by

locating and overwriting function pointers.

2.0.3 Return Oriented Programming

Return Oriented Programming (ROP) is a commonly employed technique designed to

counteract the Non-Executable (NX) protection of data segments[15]. ROP involves the iden-

tification of usable code snippets, often referred to as gadgets, within code segments marked

as executable but not writable through static analysis. These gadgets typically end with a

ret instruction and are frequently employed for register manipulation and stack data read-

/write operations. Attackers can construct various powerful primitives by strategically plac-

ing consecutive code addresses on the stack through vulnerabilities such as buffer overflows.

This enables them to achieve function parameter layout and invoke functions at arbitrary ad-

dresses.

ROP plays a pivotal role in multiple exploitation stages, including information leakage.

Therefore, nested ROP scenarios are often encountered in a comprehensive exploitation.

For instance, in cases where an attacker has limited access to imported functions within the

program, they may initiate a call to puts(&puts); to obtain the address of the puts function

in libc. After returning to the stack overflow point, they can trigger the overflow again and

call any function, such as exit(0);, located within libc.

Leveraging leaked random address information, it is possible to combine functions and

code snippets from the dynamically loaded library for a function call similar to system(”/bin/sh”);.

Alternatively, in scenarios where DEP is disabled, it becomes feasible to inject shellcode into

controllable regions and execute arbitrary code. In many early AEG approaches, extensive

research was conducted on automatic shellcode generation and injection. However, the main

focus of this work is to address complex challenges such as information leakage in automated

exploitation. Therefore, the injection of shellcode is considered only as a means of introduc-

ing a scalable and simplified state for us.

Nested ROP presents diverse combinations of function call chains, demanding that an
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AEG framework selectively and flexibly choose and combine these calls. This step-by-step

approach is essential for overcoming various protections and ultimately gaining the ability

to execute arbitrary code.

3. Design
3.1 Methodology

This work’s framework SAEG can be conceptualized as navigating an exploitation

graph (EG) through a specific search strategy to probe potential exploit paths. The traversal

of the EG is guided by conditional transitions and prioritizations that limit the breadth of the

state to be explored. The EG is defined as follows:

Definition 1 (Exploit Graph). Let AP be a set of atomic information such as secret

canary value or randomized base address of .text segment. An exploit graph or EG is a

tuple EG = (S, τ, S0, Ss, L), where S is a set of states, τ ⊆ S × S is a transition relation,

S0 ⊆ S is a set of initial states, Ss ⊆ S is a set of success states, and L : S → 2AP is

the labeling of states with a set of information true in that state. Intuitively, Ss denotes

exploitation completed, for example, reaching a shell access.

Within the Exploit Graph (EG), each state corresponds to the exploitation of a vul-

nerability with an information set. Such vulnerabilities encompass stack overflows, format

string vulnerabilities, and use-after-free, among others. SAEG maintain the distinctness of

each state by associating it with a specific type of vulnerability and its present information

set where si.l = L(si). Every τi ⊆ τ symbolizes an individual atomic exploit method.

To construct the EG, SAEG first manually create an attack template library (T ) consist-

ing of several atomic exploitation steps. Each attack template contains the classification of

the techniques to which the vulnerability is exploited, the premises required to execute this

exploitation, the atomic information obtained from completing the exploitation, and the code

knowledge to execute the attack. The definition of the attack template is as follows:

Definition 2 (Attack Template). An attack template is a tuple t = (type, p, g, code)
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where:

• type represents the vulnerability type exploited by the template.

• p ⊆ 2AP provides the preconditions of the template.

• g ∈ AP is a subset of atomic information, denoting the effect of the attack.

• code is the payload of the exploitation.

SAEG generates the initial states S0 based on the input binary program. For instance,

if the target binary is not compiled with Position Independent Executable (PIE), each initial

state s ∈ S0 implicitly contains the base address of the .text segment. Consequently, the

generated EG excludes techniques aimed at revealing this known information. Similarly, if

the target binary has not disabled lazy binding, the EG would include exploits such as GOT

hijacking. Following this, SAEG leverages the predefined attack templates in conjunction

with S0 to construct the EG, as detailed in Algorithm 1.

Subsequently, SAEG constructs an exploit path by recursively traversing the program’s

execution tree and searching for new vulnerabilities by symbolic execution. The transfer

from the current state to its successor indicates the deployment of an attack template ac-

cording to the newly found vulnerability. SAEG also verifies the exploit path during its

construction and returns a complete exploit path if found otherwise it returns empty if all

available exploits are failed. This work define that SAEG verifies the exploit through the

CHECK_EXPLOITATION procedure. The primary concern of this verification procedure

is ensuring that the exploit’s payload conforms to the target program’s constraints. For ex-

ample, if an attack requires overwriting 16 bytes of data, but only overwrite 12 bytes can be

overwritten under the current state, then it does not meet the constraint. The process through

which SAEG generates exploits based on the EG is shown in Algorithm 2.
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Algorithm 1 Generate EG
Require: A set of attack templates T , initial states S0

Ensure: EG = (S, τ, S0, Ss, L)

1: function GEN_EG(T, S0)
2: S ← ∅, Ss ← ∅, L← ∅, τ ← ∅,W ← S0

3: whileW ̸= ∅ do
4: s← pop(W )

5: S ← S ∪ {s}
6: if shell_access ∈ L[s] then
7: Ss ← Ss ∪ {s}
8: else
9: for all t ∈ T do
10: if t.g ∈ L[s] then
11: continue
12: end if
13: if t.p ∈ L[s] then
14: Create a new state s′

15: s′.l ← L[s] ∪ t.g

16: L[s′]← s′.l

17: τ [s, s′]← t

18: W ← W ∪ {s′}
19: end if
20: end for
21: end if
22: end while
23: return EG = (S, τ, S0, Ss, L)

24: end function

Algorithm 1 is capable of ensuring each step of the vulnerability exploitation will ac-

quire new information, this provides a constraint implied at line 8 of Algorithm 2 to limit the

recursion depth to less than |AP |. As a result, Algorithm 2 is inherently protected against

the problem of state explosion, yet the nature of symbolic execution itself may still lead to

generating a large number of states.

Overall, the work of SAEG is divided into two steps: (1) Generate EG employing Al-

9



gorithm 1 with attack templates and the target program. (2) Try to generate exploits by

analyzing the program against the EG with Algorithm 2.

Algorithm 2 Generate exploitation from EG
Require: An exploit graph EG, initial states S0, a sequence of transitions τa
Ensure: An exploit path consisting of a sequence of transitions if exists, otherwise ∅
1: function CHECK_EG(EG, sn, τa) ▷We use symbolic execution to get all immediate
successor of sn

2: for all transition τ [s, s′] in EG.τ where s′ is an immediate successor of sn do
3: τ ′a ← τa ∪ {τ [s, s′]} ▷ Append τ [s, s′] to τa to create a new path
4: if CHECK_EXPLOITATION(τ ′a) then
5: if s′ is in EG.Ss then
6: return τ ′a

7: else
8: result← CHECK_EG(EG, s′, τ ′a)
9: if result ̸= ∅ then
10: return result ▷ Found An exploit path
11: end if
12: end if
13: end if
14: end for
15: return ∅ ▷ No exploit path found
16: end function

To efficiently analyze the large number of states generated by symbolic execution in

large programs, this study introduces Target-Directed Symbolic Execution (TDSE) based

on static symbolic execution. Traditional symbolic execution traverses the program’s exe-

cution tree using breadth-first search (BFS), while TDSE prioritizes continuing BFS from

high-value nodes when high-value targets are found among the current nodes. The SAEG

framework applies TDSE to the immediate successor nodes in Algorithm 2 to prioritize ex-

ploring high-value states.

High-value nodes in TDSE are primarily generated by Algorithm 3. This algorithm

recursively searches the control flow graph (CFG) for cross-references of high-risk functions
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like system or execve to find a path that can execute this functions. Nodes on these paths

are marked as high-value nodes. The results of Algorithm 3 only affect the efficiency of state

analysis without impacting correctness. To enhance the framework’s execution efficiency,

Algorithm 3 adopts a greedy strategy during recursion. The pseudocode for this algorithm

is as follows:

Algorithm 3 Greedy Backward Search
Require: The target basic block where high-risk functions were called, target_block, The

maximum search depth to limit recursion max_depth, The control flow graph of the
target program CFG, The basic block from where the search begins start

Ensure: A path from start_block to target_block or an empty list if no path is found
1: function GREEDY_BACKWARD_SEARCH(target_block,max_depth, cfg, start)
2: if max_depth == 0 then
3: return ∅
4: end if
5: if start == target_block then
6: return [target_block]
7: else
8: xrefs← INCOMING_ARCS(target_block, CFG)
9: for all xref ∈ xrefs do
10: path← GREEDY_BACKWARD_SEARCH(xref,max_depth− 1, CFG, start)
11: if path ̸= ∅ then
12: return path ∪ {target_block}
13: end if
14: end for
15: return ∅
16: end if
17: end function

Additionally, some high-value patterns are manually defined and can bemarked as high-

value targets after specific attack templates are applied. These improvements enable SAEG

to more efficiently analyze states in large programs, thereby enhancing the overall efficiency

of exploit generation.
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3.2 Architecture

This work present a prototype of SAEG as shown in Figure 1. The entire prototype is

primarily divided into four major modules: binary preprocessing, exploit graph verification,

Hook module, and verification module.

Simprocedure

Path Explore

Restore Symbol

Binary Analysis

Taint Analysis

Init Entry State

State Queue
Leak Gen Exploit Gen

Allocator Real Process

Leaks

Target Binary Final Exploit

signalsignal output mismatchdeadended
cross verified

expected output

extra condition

function table

Four major modules: binary preprocessing (depicted in yellow), exploit graph verification (depicted in
blue), hook module (depicted in red), interaction verification module (depicted in green)

Figure 1 Schematic representation of the implementation structure of SAEG.

The solid arrows in the figure denote state transitions and the dotted arrows indicate

information transfer. The binary preprocessing and exploit graph verification aim to extract

the initial states and execute algorithms 1 and 2. The EG verification begins by taking the

initial state obtained through preprocessing and conducting symbolic execution to traverse

the execution tree. It aims to generate and verify multiple immediate successors for EG in

scenarios such as memory reading and writing, hook hits, and function returns. To ensure

consistency, the path verified by EG is synchronously passed to the interactive framework

for verification within the actual running program.

The Hook framework provides an appropriate abstraction for library functions. On one

hand, hooking library functions can alleviate the issue of state explosion that occurs during

the symbolic execution of these functions, thereby significantly enhancing the efficiency of

symbolic execution and even directly affecting its exploitability. On the other hand, the hook

framework allows the overall framework to be aware of the program’s state. This enables the
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framework to infer the controllability of the content and length of library function arguments.

It facilitates the exploitation of library functions such as printf and puts, and also aids

in identifying the offsets of sensitive data, such as stack addresses and canaries, thereby

enabling effective and accurate information leakage.

In contrast to traditional open-source AEG frameworks like BOFAEG and Zeratool, ex-

panding this work’s framework only requires extending specific edges from attack templates.

This eliminates the need for writing multiple sets of modules for designing from discover-

ing exploitation states to exploitation models. SAEG efficiently supports the combination

of various information leakage and exploitation methods with concise code. Such capability

is challenging to achieve in traditional expert systems based on greedy implementations that

can only prioritize a single goal.

This work’s approach leverages strategies such as prioritization and pruning to enhance

exploit attempts. In a scenario where multiple exploitable vulnerabilities converge within

line 2 of algorithm 2, the SAEG framework is adept at sequencing attempts according to a

set of manually defined priorities. These priorities may include the likelihood of successful

exploitation or the risk of causing program crashes. Furthermore, this work have refined

the preprocessing phase, enabling the framework to discard more extraneous paths contin-

gent on the preprocessing outcomes. Such optimization has led to substantial performance

enhancements as evidenced by practical trials. By utilizing the exploit graph, SAEG can

orchestrate a variety of exploit techniques and effectively bypass security mechanisms such

as NX, ASLR, and Canary.

3.3 Example

To briefly demonstrate the workflow of SAEG, this work use the vulnerable program

in Figure 2 compiled with both Canary and NX enabled, but PIE disabled.

SAEG first analyzes the protection status of the program and generates S0 = {start}.

For this simple scenario, author provide four primitive templates for vulnerability exploita-

tion T = {A1, A2, ..., A4}, which correspond to Attack 1 to Attack 4 in the appendix. Sub-
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1 int main(){
2 char buf[8];
3 read(stdin , buf, 80); // overflow
4 printf(buf); // data leak
5 read(stdin , buf, 80); // overflow
6 }

Figure 2 Simple vulnerable Program

sequently, the EGbasic generated by SAEG, EGbasic = Gen_EG(T, S0), is shown in Figure

3.

Subsequently, starting from start, SAEG performs symbolic execution to line 4 of the

source code, where two potential vulnerabilities s1 and s2 emerge. Assuming SAEG prior-

itizes the attack format-string-leak-canary (A2), it will first verify whether A2 can be com-

pleted. Once the attack is confirmed to be feasible, SAEG recursively continues symbolic

execution from s1 until it finds s3 and verifies that A3 can be completed. If at this point

A3 is considered not satisfying the constraints, SAEG will backtrack to start to re-verify

whether A1 can be completed. This process continues until a transition to the termination

state e1 ∈ Ss is made, at which point the entire exploitation path constitutes the complete

exploit generated. If, upon backtracking to start, there are no new potential exploits, then

the exploit generation fails.

startstart

s1

s2

s3 e1

A
3

A
2

A1

A3

A4

.

Figure 3 Generated EGbasic

For a slightly more complex situation, the program is compiled with both the PIE and

the canary enabled. Now the attacker also needs to obtain the address of the .text segment

randomized by ASLR. In the new initial state, L(start′) = ∅. Author added two attack

templates to the template library, T ′ = {A1, ..., A6}, corresponding to Attack 1 to Attack 6
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in the appendix. The EGenhanced generated by SAEG now is as shown in Figure 4.

start′start

s1

s2

s4

s5

s6 e2

A
6

A6

A 5

A5

A
2

A1

A3

A
3

A4

.

Figure 4 Generated EGenhanced

Then when the SAEG inspection of Attack 1 can be completed, it will continue to

try to leak more information, such as by appending the formatted string length to complete

Attack 5, or continue to exploit the formatted string attack to complete Attack 6. Thus, by

adding two templates, author have expanded SAEG to complete the complex exploit gener-

ation with more information leakage.

4. Implementation
4.1 Overview

In the detailed implementation, the binary preprocessingmodule includes the Radare2[16]

analysis engine and FLIRT[17] function signature recognition algorithm. Radare2[16] is used

for the reverse analysis of binary files, generating CFG, detecting high-risk functions and

code snippets. FLIRT[17] identifies statically compiled library functions to alleviate the bur-

den of symbolic execution. exploit graph verification module uses angr[18] for symbolic ex-

ecution, which uses z3 solver[19] as its backend. Exploits satisfying the constraint conditions

are interactively tested with the local executable file or remote port service by the verification

module. The prototype of SAEG is implemented in Python using 2330 lines of code, which

includes 30 attack templates. Among them, four templates exemplify heap exploitation by

implementing the house-of-force attack[20]. On average, each attack template requires fewer

than 50 lines of Python code, making the prototype relatively easy to further expand.
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4.2 Reproducibility

To enhance the development efficiency and reproducibility of the SAEG framework,

this study employs Github Workflow and Docker for continuous integration, as illustrated in

Figure 5. Specifically, Docker containerizes the environment, configuring a comprehensive,

lightweight, and portable base image that includes all dependencies and libraries required to

execute SAEG. Subsequently, GitHub Workflow is used to define a set of automated tests

encompassing all test cases presented in the paper. These tests will be triggered with every

code update. Each automated test launches a new container using the base image, ensur-

ing that all tests are conducted in a consistent and isolated environment, thereby avoiding

discrepancies in test results caused by environmental differences. Researchers considering

reproducing this study’s results or further developing the framework can use the provided

base image to obtain an environment identical to the developers’. Additionally, they can use

the workflow to recreate the entire SAEG testing process in their development environments,

thus significantly enhancing reproducibility and development efficiency.

old version

next version

source code

Dockerfile

images

Workflow

containers

old images and containers

Commit Code

Commit Code Build Environments Run Tests

Figure 5 The workflow for automatic reproducible build and test of SAEG.

5. Evaluation
5.1 On real CTF challenges

In this section, this work evaluate the effectiveness of SAEG through binary files from

several CTF challenges. The assessment primarily focuses on protection strategies, ex-
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ploitable vulnerability types, and the performance of generating exploit samples. All exper-

iments without ”*” mark were conducted on a Ubuntu 20.04 in docker with 2 Intel i7-13700

cores under virtualization of QEMU Virtual CPU version 2.5+ @ 2.1 GHz and 4 GB mem-

ory. It should be noted that since author did not have access to the source code of LAEG, the

results of LAEG were referenced from the original LAEG work on an Ubuntu 18.04.5 LTS

with 6 AMD R5 R5600X CPU @ 3.7 GHz cores and 16GB memory. Despite having fewer

CPU cores, less memory, and a lower clock frequency, SAEG still exhibits higher efficiency.

The details are shown in Table 2.

Compared to existing relevant work, this work’s approach achieves a significant ef-

ficiency improvement without sacrificing the capability of exploitation. Author posit that

the efficiency enhancement primarily stems from the more effective pruning of conditional

branches by the exploit graph, leading to a notable increase in vulnerability exploitation ef-

ficiency. Note that many relevant implementations rely on complete template matching,

requiring significant time for matching and verifying each template. While SAEG gener-

ates numerous exploit paths by combining primitive templates, it efficiently minimizes un-

necessary verification guided by the exploitation graph. Simultaneously, the exploit graph

proves effective in handling complex exploit generation, as it can adeptly manage multi-

step states, thereby bypassing defenses in binary programs equipped with diverse protective

mechanisms. Author further validate the feasibility of this work’s framework in addressing

heap exploitation challenges.

In the two samples from defcon27_speedrun, SAEG demonstrated a significant advan-

tage over the top hackers participating in DEF CON. The participants exploited the vulnera-

bilities in 266 seconds and 280 seconds respectively, while SAEG outperformed the fastest

participant by 35 times and 37 times. This underscores the value of AEG in compelling

assessments of software vulnerability remediation, namely, having a greater chance of con-

firming the urgency of fixes before live exploitation, while also allowing time for remediation

efforts, post the public disclosure of POCs.
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Table 2 Evaluation results on CTF challenges of SAEG (time: seconds)

Vulnerable Program Protection Zeratool BOF AEG LAEG SAEG
umdctf_jne N 7 (9.33x) 2.69 (3.58x) - 0.75

downunderctf_out N 6 (7.06x) 7 - 0.85
csawctf_roppity N 30 (16.2x) 2.38 (1.29x) - 1.85

downunderctf_return N 30 (30.0x) 2.39 (2.39x) - 1.00
dctf_babybof N 27 (24.3x) 1.59 (1.43x) - 1.11
umdctf_jnw N 27 (26.5x) 2.39 (2.34x) - 1.02
csictf_0x1 N 7 2.40 (2.72x) - 0.88
csictf_0x2 N 7 2.40 (9.99x) - 0.24
csictf_0x3 N 7 (8.75x) 2.36 (2.95x) - 0.80
dctf_sanity N 7 10.7 (12.4x) - 0.86

csawctf_password N 7 60 (7.22x) - 8.31
hcktivityctf-retcheck R+N 7 3.09 (3.90x) - 0.79

tamilctf_name N 7 1.63 (1.81x) - 0.90
dicectf_babyrop N 7 2.32 (2.19x) - 1.06
utctf_resolve N 7 2.35 (2.17x) - 1.08

nahamconctf smol N 7 1.56 (1.88x) - 0.83
sharkctf_give R+A+N 7 4.00 (4.00x) - 1.00

angstromctf_no_canary N 7 6.40 (3.65x) *8.60 (4.90x) 1.75
angstromctf_tranquil N 7 3.80 (1.70x) *5.59 (2.51x) 2.23

wpictf_dorsia1 A+N 7 7 - 1.28
downundercrf_deadcode N 7 7 - 0.29

redpwncrf_coffer N 7 7 - 0.28
dctf_hotelrop A+N 7 7 - 1.11

lexingtoncrf_gets A+N 7 7 - 0.69
crash_backdoor - 10 (9.52x) 1.75 (1.72x) *5.72 (5.56x) 1.02
crash_canary C 7 7 *5.60 (4.88x) 1.14
crash_pie A 7 7 *5.74 (4.85x) 1.18

S-crash-static - 7 7 *1.68 (1.73x) 0.96
S-defcon27-speedrun-001 N 7 7 *41.3 (5.46x) 7.55
defcon27-speedrun-002 N 7 7 *6.20 (1.54x) 4.02

utctf_bof N 7 2.33 (1.60x) *5.54 (3.81x) 1.45
gyctf_force R+C+A+N 7 7 - 174

lexingtoncrf-madlibs R+N 7 7 - 7

crash-canary-pie R+C+N 7 7 7 7

The number in parentheses after the time refers to the efficiency improvement multiple achieved by our
SAEG compared to the current framework. In the protection status, ”R” represents RELRO, ”C”

represents Canary, ”A” represents ASLR, and ”N” represents NX. The ”S-” prefix indicates a statically
linked program.
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In the defcon27_speedrun-002 example, SAEG approach’s runtime is slightly close to

that of LAEG, attributed to the presence of numerous constraint-solving steps in the file (re-

quiring interactive password input). LAEG provides a crash POC through the exploitation

framework, including the correct password, resulting in saved solving time. Given that the

real exploitation process may significantly differ from the POC’s execution flow (for in-

stance, in a repeatable path where one branch’s two sides represent a crash and information

leakage, the POC may only obtain crash information, neglecting the information leakage on

the other side of the branch—essential for completing the exploitation), author contend that

the proper handling and utilization of POC information are worthwhile topics for exploration.

However, this exceeds the scope of author’s current work.

In testing scenarios such as static compilation examples (S-crash-static), the input target

programs are all large binary files exceeding 500KB. Only SAEG and LAEG can generate

the exploitation, and the efficiency of SAEG is higher than that of LAEG with existing POC

knowledge. This indicates that modeling library functions and attempting to reconstruct

function tables is beneficial.

The example lexingtonctf_madlibs is a typical example of the limitation of symbolic

execution. This example contains a nested format string vulnerability, which can lead to a

stack overflow vulnerability. However, symbolic execution based on angr still cannot handle

this problem. Therefore, SAEG is unable to complete the exploitation as it cannot find new

potential vulnerabilities. Another failed example is crash-canary-pie. SAEG has the capabil-

ity to handle multi-step leaks, but this scenario needs to involve truncation symbol overwrite

vulnerability. In order to exploit this vulnerability, attackers may need to overwrite the low

bytes of the return address pointing to libc to re-enter the current function, creating a second

chance for information leaks and exploiting stack overflow vulnerability. SAEG does not

have an exploitation primitive template for re-entering the current function, thus it cannot

complete the full exploitation. After author provided a simple re-entry template, SAEG suc-

cessfully exploited crash-canary-pie. However, this indicates that SAEG needs to combine
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existing templates rather than create new exploitation primitives beyond the templates.

5.2 On real CGC tasks

This study also tested 10 binary files from real CGC tasks, including 8 large binaries

(file size greater than 500KB or with more than 1,000 basic blocks) and 2 smaller binaries.

Given that all existing open-source works have failed to produce results in the analysis of

large binary files, this section exclusively evaluates the performance and efficiency of SAEG

when handling binaries of varying sizes and complexities.

Table 3 Evaluation results on CGC tasks of SAEG

Task Name Basic Block (K) Size (KB) SAEG Time (s)
zonghengcup-1 <0.1 5 11.3
zonghengcup-2 4 54 85.8

wangdingcup2023-1 19 672 4.81
wangdingcup2023-2 19 672 8.14
wangdingcup2023-3 19 672 7

wangdingcup2023-4 <0.1 7 1.07
wangdingcup2023-5 19 672 20.3
wangdingcup2023-6 19 672 19.2
wangdingcup2023-7 1096 12413 7

wangdingcup2023-8 19 672 7

The test results are shown in Table 3. Despite encountering the state explosion prob-

lem when processing large binaries, SAEG maintained a high exploit generation efficiency

through effective path prioritization and pruning strategies. Among the 8 large binaries,

SAEG successfully generated complete exploit paths for 5 files, with an average time of 23

seconds. For the three failed tasks, the specifics are as follows: wangdingcup2023-3 pre-

sented a unique comparison scenario that circumvented SAEG’s prioritization strategy, a de-

ficiency that can be addressed through hotspot path optimization techniques; wangdingcup2023-

7 was exceedingly large, requiring over 300 seconds for the advanced disassembly engine

IDA to perform basic static analysis, and SAEG similarly could not complete its analysis

within 300 seconds; wangdingcup2023-8 resembled the earlier crash-canary-pie, exceed-

ing the scope of SAEG’s attack templates. For the 2 smaller binaries, SAEG successfully

generated exploit paths for both, with an average time of 6 seconds. These experimental

results indicate that the SAEG framework performs well even with large binary files, further
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demonstrating its potential value and applicability in practical scenarios.

6. Discussion
6.1 Real-World Applications

SAEG may encounter inherent limitations of symbolic execution in collecting vulnera-

bility states, such as path explosion issues in complex large-scale applications. In such cases,

we can replace the path exploration module with known exploit samples, such as POC caus-

ing a denial of service, to improve the efficiency of initial exploitation state exploration for

large-scale applications. Alternatively, we can use concolic execution to enhance efficiency

through fuzzing. While recent works, such as MAZE and Revery, focus on optimizing mod-

ules or smaller components of exploit generation, the topic of crash state exploration, as

another field of program analysis, is not extensively discussed in this article.

SAEG’s exploit generation and exploitation information collection capabilities can help

developers differentiate between vulnerabilities that may only lead to DoS attacks and those

that have the potential to achieve arbitrary code execution by bypassing protection mecha-

nisms. By analyzing the potential harm of these vulnerabilities and understanding the un-

derlying causes of successful exploitation, SAEG can assist developers in proposing more

secure patching solutions, ultimately improving the overall security of modern protections.

6.2 Trade-Off Of Symbolic Execution

Using modeling and hooking can mitigate the problem of state explosion caused by li-

brary functions, but it may cause the symbolic execution engine to lose precise information

about stack data. Since the stack space is linear and not automatically cleared, both library

functions and the program itself reuse the same stackmemory. Therefore, crucial information

introduced by library functions may reside on the stack and it is difficult for symbolic ex-

ecution to capture after function replacement. This information may be obtainable through

concolic execution or real-time debugging methods. However, using dynamic analysis to

obtain this part of information leakage is beyond the scope of this work’s framework.
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6.3 Future Research

The current limitations of SAEG are primarily associated with a clear reliance on sym-

bolic execution and ROP technology. ROP technology cannot be applied to high-risk vulner-

abilities in real scenarios caused by logical flaws, such as command concatenation[21], branch

mispredictions, and supply chain backdoors[22], where attacks do not manipulate return ad-

dresses/jump addresses. To address these limitations, future work can focus on optimizing

the symbolic execution section to handle high-risk path exploration and make the framework

compatible with these types of vulnerability exploitation.

7. Related Works
7.1 AEG

The research related to AEG was first proposed in APEG[23], which aims to generate

exploits for unpatched programs through a patched program. In subsequent work[24], AEG

automatically generates an exploit by providing a POC. In recent years, researchers have

proposed several AEG solutions. However, modern protection procedure like ASLR and

Stack Canary brings great challenges to the exploitation capabilities of those AEG imple-

mentations.

7.1.1 User-space Exploit Generation

Many AEG frameworks strive to efficiently generate utilization like MAZE[25] tackles

heap layout as a patching problem by identifying allocated and deallocated primitives to

construct the desired heap layout in complex scenarios. Revery[12] efficiently explores and

generates exploits by replacing symbolic execution with fuzzing. However, they assume

protections like ASLR that require information leakage are disabled. Therefore, combining

SAEG with these technologies may improve the exploitation ability of existing work.
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7.1.2 Portection Bypass

The realm of automatic exploit generation stands as a vibrant domain in contemporary

research endeavors, some recent work has focused on solving the problem of information

leakage in AEG. For example, LAEG[6] aims to make up for the lack of information leak-

age capabilities of existing AEGs through optimized dynamic analysis methods. ExpGen[8]

aims to obtain leaked ASLR information through fuzz testing and make subsequent use of

it, while CanaryExp[9] adds detection of Canary leaks similar to LAEG on the basis of Exp-

Gen, and enhances the leakage capabilities by guiding fuzz testing technology while making

the leaks more Robust. However, it is difficult for them to use formatted strings or heaps

of feng shui to accomplish more complex information leakage or vulnerability exploitation.

Autopwn[26] implements the first Artifact-assisted automatic heap exploitation framework,

which defines an Exploitation State Machine to receive automatically learned knowledge to

efficiently perform complex heap exploitation.

7.1.3 Kernel-space Exploit Generation

With the widespread application of the Linux kernel in mobile devices, cloud servers,

supercomputing clusters, and other infrastructure, AEG, specifically targeting the Linux ker-

nel, has become a popular focus. For instance, KOOBE[27] attempts to automatically exploit

out-of-bounds (OOB) vulnerabilities in the slab allocator, while FUZE[28] aims to automate

the exploitation of use-after-free (UAF) vulnerabilities in the kernel. K-LEAK[29] models

heap memory corruptions to generate information leaks to counteract kernel protections ef-

ficiently. KEPLER[30], on the other hand, automates the development of complete exploits

by using given control flow hijacking primitives.

7.2 Path Exploration
7.2.1 Symbolic Execution

Symbolic execution utilizes symbols to represent variables and simulate the execution

of a program. It extracts and resolves constraints along the execution path using constraint
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solvers like z3 and cvc5[31]. Theoretically, symbolic execution generates constraints for every

path, which may result in challenges such as state explosion.

Prominent tools for symbolic execution include KLEE[32] and angr. KLEE functions

as a source code analysis framework, compiling from the source code and incorporating in-

strumentation for symbolic execution. On the other hand, angr serves as a platform-agnostic

binary analysis framework, offering a plethora of easily extendable modules and interfaces.

It can simulate binary program instructions and convert standard or file inputs into bit vectors.

7.2.2 Fuzzing

Fuzzing can explore a large number of paths in a short period of time through processes

such as the automated generation and mutation of inputs. Common tools for fuzzing include

American Fuzzy Lop (AFL)[33] andAFL++[34]. AFL utilizes genetic algorithms to effectively

expand code coverage, and it can be further improved through the integration of ASAN[35]

and QEMU.

For example, ARCHEAP[36] uses extended AFL to automatically detect new primitives

for heap exploitation and CanaryExp uses AFL++ to generate POC that leaks the value of

canary.

7.3 Automated Program Repair

Traditional Automated Program Repair (APR) primarily focuses on automatically fix-

ing logical errors, type confusion, and other software bugs including patching software vul-

nerabilities. However, it often deals with relatively small code segments. With the advent

of Large Language Models (LLMs), the scope and effectiveness of APR have significantly

expanded. In 2024, the U.S. Defense Advanced Research Projects Agency (DARPA) held

the first AIxCC challenge[37], combining AEG and APR to automatically discover and patch

vulnerabilities in real-world applications.

Recent studies have demonstrated the superiority of LLM-based APR over all existing

APR methods. Xia et al.[38] were the first to prove that APR powered by LLM outperforms
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any other APR approaches. Chen et al.[39] implemented library function-level APR using

LLMs. Similarly, Ahmed et al.[40] achieved comparable results with library function-level

APR through techniques such as few-shot learning. Xiang et al.[41] systematically discussed

the effectiveness of LLM-based APR in real-world code repairs, using comments generated

by ChatGPT to guide local code generation models in fixing bugs at a low cost. With the

support of LLMs, APR is increasingly poised to be applied to real-world vulnerability repairs.

8. Conclusion
This work have designed a novel exploitation graph based on the attack graph. Addi-

tionally, we have implemented an automatic exploit generation framework, SAEG, based on

the exploitation graph. This framework relies on finely-grained vulnerability primitives that

are easy to expand and can generate complex exploits containing information disclosure to

counter general modern protection mechanisms. This work use binary files from CTF chal-

lenges to evaluate the framework, and the results demonstrate the effectiveness of SAEG.

Lastly, author believe this work have raised the state-of-art of open-source AEG frameworks

and provided new ideas for the state management of AEG.
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Appendix

Appendix for Attack Templates
Attack 1 chop-leak-canary

Type: Overwrite terminate symbol in output string.

Premise: None.

Effects: Secret value of canary.

Attack 2 format-string-leak-canary

Type: use stack format string vulnerability to leak data on stack.

Premise: None.

Effects: Secret value of canary.

Attack 3 leak-got

Type: Use stack overflow to launch ROP attack.

Premise: Secret value of canary ∧ Base address of .text segment.

Effects: Base address of .libc mapping.

Attack 4 return-to-libc

Type: Use stack overflow to launch ROP attack.

Premise: Secret value of canary ∧ Base address of .libc segment.

Effects: Shell access.

Attack 5 chop-leak-text

Type: Overwrite terminate symbol in output string.

Premise: None.

Effects: Base address of .text segment.

Attack 6 format-string-leak-text

Type: use stack format string vulnerability to leak data on stack.

Premise: None.

Effects: Base address of .text segment.
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